# 6.5 Properties of Logarithms



# **Learning Objectives**

- Work with the Properties of Logarithms
- Write a Logarithmic Expression as a Sum or Difference of Logarithms
- 3. Write a Logarithmic Expression as a Single Logarithm
- 4. Evaluate Logarithms Whose Base Is Neither 10 Nor e



### **Definitions**

$$\log_a 1 = 0 \longrightarrow \alpha^0 = 1$$

$$\log_a a = 1 \longrightarrow \alpha^1 = \alpha$$

### **Examples**

$$\log_{27} \mathbf{1} = \bigcirc \log_{53} \mathbf{53} = \bigcirc$$



#### **Theorem**

Properties of Logarithms (Inverse properties)

In the properties given next, M and a are positive real numbers,  $a \neq 1$ , and r is any real number.

$$(1) a^{\log_a M} = M$$

log.base a cancels" with exp. base a

$$\log_a a^r = r$$

### Using Properties (1) and (2)

(a) 
$$2^{\log_2 \pi} = 1$$

(b) 
$$\log_{0.2} 0.2^{\sqrt{3}} = \sqrt{3}$$

(c) 
$$\ln e^{kt} = kt$$

#### **Theorem**

#### **Properties of Logarithms**

In the following properties, M, N, and a are positive real numbers,  $a \ne 1$ , and r is any real number.

The Log of a Product Equals the Sum of the Logs

(3) 
$$\log_a(MN) = \log_a M + \log_a N$$

$$a^n \cdot a^m = a^{n+m}$$

The Log of a Quotient Equals the Difference of the Logs

(4) 
$$\log_a \left(\frac{M}{N}\right) = \log_a M - \log_a N$$

$$\frac{\mathcal{Q}_w}{\mathcal{Q}_w} = \mathcal{Q}_{W-W}$$

The Log of a Power Equals the Product of the Power and the Log

$$\log_a M^{(c)} = r \log_a M$$

$$(a^n)^m = a^{nm}$$

Writing a Logarithmic Expression as a Sum of Logarithms,  $\sqrt{\chi} = \chi^{\frac{1}{2}}$ 

Write  $\log(x\sqrt{x^2+1}), x>0$ , as a sum of logarithms.

Express all powers as factors.

$$\log (X\sqrt{X^{2}+1}) = \log x + \log (X^{2}+1)^{1/2}$$

$$= \log x + \log (X^{2}+1)^{1/2}$$

$$= \log x + \frac{1}{2} \log (X^{2}+1)$$

#### Writing a Logarithmic Expression as a Difference of Logarithms

Write

$$\ln \frac{x^2}{(x-1)^3} \quad x > 1$$

as a difference of logarithms. Express all powers as factors.

$$\ln \left[ \frac{\chi^2}{(\chi - 1)^3} \right] = \ln \chi^2 - \ln (\chi - 1)^3$$

$$= 2 \ln \chi - 3 \ln (\chi - 1)$$

#### Writing a Logarithmic Expression as a Sum and Difference of Logarithms

Write

$$\log_a \left[ \frac{\sqrt{x^2 + 1}}{x^3 (x+1)^4} \right] \quad x > 0$$

as a sum and difference of logarithms. Express all powers as factors.

= 
$$\log_a (x^2+1)^4 - \log_a (x^3(x+1)^4)$$
  
=  $\log_a (x^2+1)^2 - \log_a (x^3+\log_a (x+1)^4)$ 

Pearson

Copyright © 2016, 2012 Pearson Education, Inc. All Rights Reserved

$$= \frac{1}{2} \log_a(x^2+1) - 3 \log_a x - 4 \log_a(x+1)$$

#### Writing Expressions as a Single Logarithm

Write each of the following as a single logarithm.

(a) 
$$\log_a 7 + 4\log_a 3 = \log_a 7 + \log_a 3^4 = \log_a (7.3^4) = \log_a 567$$

(b) 
$$\frac{2}{3} \ln 8 - \ln (5^2 - 1) = \ln 8^{2/3} - \ln (5^2 - 1) = \ln 4 - \ln 24$$
  
=  $\ln (\frac{4}{24}) = \ln (\frac{1}{6})$ 

(c) 
$$\log_a x + \log_a 9 + \log_a (x^2 + 1) - \log_a 5$$
  
=  $\log_a (9x(x^2+1)) - \log_a 5$ 

Pearson

Copyright © 2016, 2012 Pearson Education, Inc. All Rights Reserved

Slide - 10

$$= \log_{4}\left(\frac{9\chi(\chi^{2}+1)}{5}\right)$$

### **Theorem**

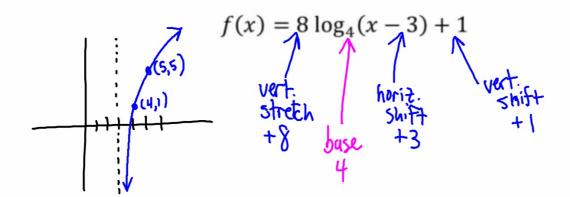
#### Change-of-Base Formula

If  $a \neq 1$ ,  $b \neq 1$ , and M are positive real numbers, then

$$\log_a M = \frac{\log M}{\log a}$$
 and  $\log_a M = \frac{\ln M}{\ln a}$ 

$$\frac{Ex}{\log_2 36} = \frac{\log_3 36}{\log_3 2} = \frac{\ln_3 6}{\ln_3 2}$$




Using the Change-of-Base Formula

Approximate: (with your calculator)

- (a)  $\log_5 89 \approx 2.7889$
- (b)  $\log_{\sqrt{2}} \sqrt{5} \approx 2.3219$

Round answers to four decimal places.

Use a graphing utility and the change of base theorem to graph the following function.

